The majority of the information that we receive about the world around us comes through our eyes.

Light is not only an essential prerequisite, it is the medium by which we are able to see.

Through its intensity, the way it is distributed and through its properties, light creates specific conditions which can influence our perception. Lighting design is, in fact, the planning of our visual environment.

Good lighting design aims to create perceptual conditions which allow us to work effectively and orient ourselves safely while promoting a feeling of well-being in a particular environment.
Designing with Light

- Light plays a central role in the design of a visual environment.
- The architecture, people and objects are all made visible by the lighting.
- Light influences our well-being, the aesthetic effect and the mood of a room or area.

- **It is light that first enables “what you see”**.

Our perception of architecture will be influenced by light:
- *Light defines zones and boundaries,*
- *Light expands and accentuates rooms,*
- *Light creates links and delineates one area from another.*
The basis for every lighting concept is an analysis of the project…
- the tasks the lighting is expected to fulfill,
- the conditions and special features of a space or work surface.

When it comes to qualitative planning, it is necessary to gain as much information as possible about the environment to be illuminated, how it is used, who will use it and the style of the architecture.

A quantitative design concept can to a large extent follow the standards laid down for a specific task.
- standards will dictate how much light is needed,
- the degree of glare limitation,
- the source color and color rendering.

Summary
• An understanding quality versus quantity
• Art and Science
• Preliminary lighting concepts list the properties that lighting should possess. They may give no exact information about the choice of lamps or fixtures or their arrangement.

• Further analysis provides illumination guidelines giving information about the individual forms of lighting… i.e. high light levels will need high performance fixtures and lamps, etc.

• The challenge of a qualitative lighting design is to develop a design concept that combines the technical and aesthetic requirements of complex guidelines.

• A concept that delivers the required performance with a equal level of technical expertise and the highest level of artistic clarity will produce the most convincing solution.
Planning and Process: Design Development

As the design phase progresses, decisions are made regarding:
- the lamps and fixtures to be used
- the arrangement and installation of the fixtures
- any required electrical and control devices

The decision regarding lamp type can be made at the beginning of a project or left until an advanced planning stage.

Lighting layouts (the plan) can be determined by the choice of a light fixture or could be the criteria for fixture selection.

Lighting design process should be seen as a “back and forth” check in which developed solutions are repeatedly compared to the predetermined goals and requirements.

Summary
- Utilization of Space
- Psychological Requirements
- Architecture and Ambience
Lighting Effects: Shadows and Gradient

A non-continuous luminance gradient across a surface may create confusion, miss-information, or the perception of darkness / gloom – or is this drama?
Lighting Effects: Illumination of 3D Objects

Irrespective of size, a three-dimensional artifact must be illuminated from several different directions.

Light from multiple directions:

- models a sculpture
- expresses depth by highlighting some areas while allowing others to fall into shadow
- different angles render material variations with lesser or greater emphasis

Combination Key, Fill, and Back light

Key light only
Fill light only
Back light only
Light Patterns in Architecture
Light Patterns in Architecture
Light Patterns in Architecture
Light Fixtures
Types of Distributions... \textit{by Light Fixture}

- Direct
- Indirect
- Direct-Indirect
Types of Distributions… by Light Fixture
Types of Distributions... *by Light Fixture*
Types of Distributions… by Light Fixture
Forming Functional Zones

- Large areas that on the whole are evenly illuminated can appear rather monotone if they are not divided up.

room illuminated evenly
Forming Functional Zones

unlit room
Forming Functional Zones

room with left wall illuminated (simulate daylight)
Forming Functional Zones

- Light can be used to emphasize individual functional zones in an area, e.g. traffic areas, waiting areas, and exhibition areas.

room with rear walls only illuminated
Forming Functional Zones

• Light can be used to emphasize individual functional zones in an area, e.g. traffic areas, waiting areas, and exhibition areas.
Forming Functional Zones

- Light can be used to emphasize individual functional zones in an area, e.g. traffic areas, waiting areas, and exhibition areas.

room with stairs only illuminated
Forming Functional Zones

- Zonal lighting with delineated beams of light visually separates one area from another.
Forming Functional Zones

- Different illuminance levels establish a perceptual hierarchy and direct the viewer's gaze.

room with left wall and stair illuminated equally
Forming Functional Zones

- Differentiated lighting of functional zones divide up an area and improve orientation.

room with rear wall and stair illuminated
Forming Functional Zones

- The differentiation of light colors creates contrasts and emphasizes individual zones.

room with left and rear walls illuminated
Forming Functional Zones
Forming Functional Zones - Exterior
Forming Functional Zones - *Exterior*
Defining Spatial Borders - *Horizontal*

- Floor illumination emphasizes objects and pedestrian surfaces.

floor lit with downlight fixtures
Defining Spatial Borders - *Horizontal*

- Indirect lighting of a ceiling creates diffuse light in the room with the lighting effect being influenced by the reflectance and color of its surface.

ceiling uniformly lit with uplight wall fixtures
Defining Spatial Borders – *Horizontal*
Defining Spatial Borders – *Horizontal*
Defining Spatial Borders – *Horizontal*
Defining Spatial Borders - *Vertical*

- Vertical spatial borders are emphasized by illuminating wall surfaces.
- Uniform light distribution emphasizes the wall as a whole.
- Bright walls create a high level of diffuse light in the room.
- Vertical illumination is used to shape the visual environment.
- Room surfaces can be differentiated using different levels of illuminance to indicate their importance.
- Uniform illumination of the surfaces emphasizes them as an architectural feature.
Defining Spatial Borders - *Vertical*

- Grazing light gives the wall structure by adding patterns of light.
- A decreasing level of brightness across a wall is not as effective as uniform wall washing at defining room surfaces.
- Lighting effects using grazing light emphasis the surface textures and become the dominant feature.
Lighting vertical surfaces, such as walls, emphasizes the spatial perception of a room.
Defining Spatial Borders - Vertical
Defining Spatial Borders - *Vertical*
Defining Spatial Borders - *Vertical*
Defining Spatial Borders - *Vertical*
Emphasizing Architectural Features

- The illumination of architectural details draws attention away from the room as a whole towards individual components.
- Columns appear as silhouettes in front of an illuminated wall.

walls lit with grazing fixtures
Emphasizing Architectural Features

- Rooms can be given a visual structure by illuminating the architectural features.
- Narrow-beam downlights emphasizing the form of the columns.

columns lit with grazing fixtures
Emphasizing Architectural Features

• Grazing light accentuates individual elements or areas and brings out their form and surface texture.
• Grazing light can cause highly three-dimensional features to cast strong shadows.
• By using different levels of illuminance, different parts of a room can be placed in a visual hierarchy.
Emphasizing Architectural Features
Visual Clarity
Visual Clarity
ERCO Light Scout

Guide

- **Introducing ERCO**
- **Lighting your way**
- **ERCO Lighting control systems**
- **Contact us**
- **Download**

Languages

- English
- Deutsch
- Français
- Italiano
- Nederlands
- Português
- Español

Projects

- **ERCO Lighting control systems**
 - Project summary
 - Lighting control systems for a diverse range of applications.

- **Metropolitan Museum of Art, New York**
 - Project summary
 - Installation of LED lighting for the museum's exhibits.

- **Ifesias building, Athens**
 - Project summary
 - Exterior lighting design for a historic building.

- **Aquascope, Tokyo**
 - Project summary
 - Outdoor lighting for a public park.

- **Shibuya station, Tokyo**
 - Project summary
 - Modern lighting installation for a busy train station.

- **Teatro dell’Opera di Roma, Rome**
 - Project summary
 - Interior lighting for a historic opera house.

- **National Library of Australia, Canberra**
 - Project summary
 - Architectural lighting for a government building.

- **Rutledge Theatre, Sheffield**
 - Project summary
 - Lighting for a performing arts venue.

- **ERCO Lighting Control Systems**
 - Project summary
 - Comprehensive control solutions for various projects.

Lighting central

- **Case studies**
 - Detailed examples of successful lighting projects.

Contact us

- **ERCO Lighting Control Systems**
 - Direct contact information for sales and support.

Download

- **ERCO Lighting Control Systems**
 - Software and manuals for lighting control systems.

Languages

- English
- Deutsch
- Français
- Italiano
- Nederlands
- Português
- Español

Projects

- **ERCO Lighting control systems**
 - Project summary
 - Detailed information on various lighting projects completed by ERCO.

- **Metropolitan Museum of Art, New York**
 - Project summary
 - Installation of advanced lighting systems for the museum.

- **Ifesias building, Athens**
 - Project summary
 - Exterior lighting design for a significant architectural project.

- **Aquascope, Tokyo**
 - Project summary
 - Outdoor lighting solution for a popular tourist attraction.

- **Shibuya station, Tokyo**
 - Project summary
 - Modern lighting installation for a busy urban rail station.

- **Teatro dell’Opera di Roma, Rome**
 - Project summary
 - Interior lighting for a renowned opera house.

- **National Library of Australia, Canberra**
 - Project summary
 - Architectural lighting for a government project.

- **Rutledge Theatre, Sheffield**
 - Project summary
 - Lighting for a prominent performing arts venue.

Contact us

- **ERCO Lighting Control Systems**
 - Contact information for sales and support.

Download

- **ERCO Lighting Control Systems**
 - Software and manuals for lighting control systems.

Languages

- English
- Deutsch
- Français
- Italiano
- Nederlands
- Português
- Español
Psychology of Light

Because the sense of sight is contrast sensitive, the brightness contrast of a space determines its emotional impact

Emotional Impact: individual impressions of a space are a function of brightness contrast

– the relationship of surfaces that are lighted to those left in the dark

– the focus or foreground to the surround or background

General illumination in a room will permit vision. The emotional impact of an interior through the manipulation of brightness contrast is a real challenge for the creative lighting designer.
Emotional Impact
Emotional Impact
Degrees of Stimulation

All activities benefit from some form of visual stimulation
- **High** levels encourage participation and increase enjoyment
- **Low** levels help a person feel contented, comfortable, focused, and relaxed

Although individuals react differently to the same environment, there is a high degree of similarity in people’s reactions to light.
Degrees of Stimulation

Environments that are complex, crowded, asymmetrical, novel, unfamiliar, surprising, random are High-load. Environments that are simple, uncrowded, symmetrical, conventional, familiar, unsurprising, or organized are Low-load.
Degrees of Stimulation

Environmentalists use the terms **High-load** to **Low-load** to describe the degrees of stimulation of arousal. The more stimuli that must be processed by a person, the higher the load.
The degree of brightness contrast evokes emotions in the same way as background music. It affects:

- the performance of task,
- influences the behavior of people at work or play, and
- impact the amount of containment and pleasure we experience.

The degree of brightness contrast establishes the emotional setting, which either enforces or undermines the intended activity.

Steps in the design process:
1. Define the activity that will occur in the space
2. Determine the degree of simulation that will enforce the activity
3. Establish the degree of brightness contrast that will yield the necessary level of simulation

Brightness contrast is established by developing patterns of light and shade – select which surfaces to receive light or leave other is darkness
Degrees of Brightness Contrast

Low Contrast Environment – everything is of equal emphasis
Degrees of Brightness Contrast

Low Contrast Environment – *everything is of equal emphasis*
Degrees of Brightness Contrast

Low Contrast Environment – *everything is of equal emphasis*
Degrees of Brightness Contrast

Mid Contrast Environment – *combinations of emphasis*
Degrees of Brightness Contrast

Mid Contrast Environment – *combinations of emphasis*
Degrees of Brightness Contrast

High Contrast Environment – *high bright and dark areas*
Degrees of Brightness Contrast

High Contrast Environment – *high bright and dark areas*
Degrees of Brightness Contrast

Very High Contrast Environment – extreme *high bright and dark areas*
Degrees of Brightness Contrast

Very High Contrast Environment – extreme high bright and dark areas
Subjective Impressions

• Professor John Flynn’s studies in the 1970’s established fundamental research about how the distribution of light and resulting patterns of light effect our subjective impressions.

• In particular patterns of light on vertical surfaces, because they are more noticeable, strongly influence our impressions of:

 ➢ Spaciousness / Confinement
 ➢ Visual Clarity / Haziness
 ➢ Relaxation / Activation
 ➢ Private/ Public
Subjective Impressions

1. **Direct lighting on table** strong contrast, too harsh for lighting faces
Pleasantness: *Neutral*
Clarity: *Hazy, quiet impression*
Spaciousness: *Strong impression of confinement*

2. **Lighting on all walls**, low intensity, suitable for display
Pleasantness: *Neutral, tending towards a more pleasant impression*
Clarity: *Neutral*
Spaciousness: *Promotes impression of spaciousness, increased height*

3. **Lighting of cove above**, low intensity, pleasant for near and distant faces
Pleasantness: *Strong negative*
Clarity: *Strong promoting hazy, quiet impression*
Spaciousness: *Neutral*

4. **Direct lighting on table, Lighting of small wall**
Pleasantness: *Relatively Strong positive*
Clarity: *Neutral*
Spaciousness: *Neutral with strength in impression of length*

5. **Direct lighting on table, Lighting of cove above**
soft subdued effect, pleasant for near faces
Pleasantness: *Relatively Strong negative*
Clarity: *Strong*
Spaciousness: *Somewhat*

6. **Lighting of cove above, Lighting of walls** flat shadow free
Pleasantness: *Strong*
Clarity: *Strong*
Spaciousness: *Strong*
Subjective Impressions

Reinforced by

- Uniform peripheral lighting, especially on walls
- Brightness is reinforcing, but not decisive
Spaciousness:
Relatively bright ceilings and wall are particular importance to reinforce a sense of spaciousness. Uniform illumination also helps make the room feel spacious.
Subjective Impressions

Reinforced by

- Higher light levels on horizontal surfaces: workplane, ceiling plane
- Light in central area of room
- Some wall luminance
- Cooler, white light

VISUAL CLARITY
Visual Clarity:
Visual clarity refers to the crispness and distinctness of the visual environment, rather than how well a task can be seen. Visual clarity is reinforced by shadows, by emphasis on horizontal surfaces such as the work plane and the ceiling, and by higher luminous in the center of the room.
Subjective Impressions

Reinforced by

- Non-uniform peripheral lighting, especially on walls
- Lower light levels
- Warmer-toned light sources

RELAXATION
Luminance Patterns

Relaxation:
Relaxation also implies non-uniform lighting, with non-uniform wall lighting contributing to this impression. Warm color sources contribute to a relaxing feeling. Aspects of the patterns for relaxation can be effectively combined with those for visual clarity to create effective and comfortable work environments.
Subjective Impressions

Reinforced by

- Non-uniform
- Lower brightness in zone of user
- Higher brightness in zones surrounding user
- Wall lighting

PRIVACY
Privacy:
Privacy is light being in the shadows. Lighting patterns which are overall low, non-uniform, and darker zone of the occupant than in the surroundings will reinforce an impression of privacy. Vertical rather than horizontal surfaces should be lit.
Subjective Impressions

Impression of Spaciousness – *the room appears larger or smaller*
Subjective Impressions

Impression of Perceptual Clarity – *the room appears public or private*
Subjective Impressions

Impression of Pleasantness – *the room appears friendly and sociable*
The Three Elements of Light

General or Ambient lighting

provides an area with overall illumination. Also known as ambient lighting, general lighting radiates a comfortable level of brightness, enabling one to see and walk about safely.

Task Lighting or Lighting at the Work plane

helps you perform specific tasks such as reading, sewing, cooking, homework, hobbies, games, or balancing your checkbook.

Light or Highlighting

adds drama to a room by creating visual interest. As part of a decorating scheme, it is used to spotlight paintings, houseplants, sculpture, and other prized possessions, or to highlight the texture of a wall, drapery or outdoor landscaping.
Light Distribution Strategies

General or Ambient Lighting:
General lighting provides uniform illumination over the entire area of a room, allowing flexibility in the placement of workstations. Localized general lighting also provides approximately uniform illumination, but luminaries are located in a pattern that responds to the specific arrangement of workstations.

Local or Task Lighting
Local Lighting provides high illumination on relative small areas. It can be too bright and uncomfortable unless surrounding surfaces are also illuminated, as shown. Local lighting used with general lighting is called supplementary lighting.
Focal Glow or Task light is…

“the campfire of all time, the glowing embers around which stories are told”
“the light burning at the window or welcoming gleam of the open door”
“directive, creates a brighter center: tells us what to look at, organizes, marks the important element”
General or Ambient light is…

“a snowy morning in open country”
“twilight haze in a mountain top or cloudy day on the ocean”
“the light in a white tent at noon”
Sparkle or Glitter is…

“a play of brilliants”
“the sensation of a cache of diamonds in an opened cave”
“a ballroom of crystal chandeliers”
Richard Kelly Grant

2011 Call For Entries

ABOUT THE GRANT

The Richard Kelly Grant was established by the New York Section of the Illuminating Engineering Society in 1990. Originally conceived as a scholarship program and later opened to young persons working in lighting in North America, the Grant is administered by the New York Section under the auspices of the IESNYC.

PURPOSE

To recognize and encourage creative thought and activity in the use of light. Each award(s) will be granted to the person(s) who present and carry forth Richard Kelly’s ideals, enthusiasm and reverence for light.

ELIGIBILITY

Anyone 35 years or under, studying or working in the art and/or science of Illumination, in the United States, Canada or Mexico.

CRITERIA

Applicant must demonstrate accomplishment as well as the potential to contribute to the art and science of Illumination. Proposed, completed, and ongoing work involving light may be submitted and should clearly illustrate the way in which the conceptual or applied use of light in new and innovative ways is used to solve an interior design problem. The Committee will consider works using light in:

- Architecture
- Art
- Education
- Environmental Design
- Health
- Future Design
- Software Design
- Theater

SUBMISSION FORMAT

Submissions must include:

- Written materials, artwork, photographs or drawings, models, video/animation or DVDs (7 minutes maximum), images must be numbered and kept to the limit of this submission.
- All electronic submissions must be in high-resolution JPEG format.
- A one-page written outline summarizing the work and discussing the thought process behind the submission.
- A description of how the grant would be used to further the applicant’s education or research in lighting. Applicants must agree to use grants for purposes described in grant proposals and be prepared to report back to the Board on the progress of their work.
- Personal resume (curriculum vitae)
- Two letters of reference to be sent, in sealed envelopes marked with the applicant’s name on the back, directly from the writers to the Grant at the address below.

DEADLINE

Grant proposals must be submitted by March 11, 2011 to:

The Richard Kelly Grant

IESNYC
150 Wall Street, Floor 17
New York, NY 10005
212.224.5000 x106 212.224.5017/8
email: leah@ies.org

Include a stamped, self-addressed envelope for all submissions to be returned. Grant recipient applications become the property of the Richard Kelly Grant and may be used in Grant publicity materials.
The fact that a medium grey area will appear light grey if it is bordered in black, or dark grey if it is bordered in white. This can be explained by the fact that the stimuli perceived are processed directly - brightness is perceived as a result of the lightness contrast between the grey area and the immediate surroundings. What we are considering here is a visual impression that is based exclusively on sensory input which is not influenced by any criteria of order linked with our intellectual processing of this information.

The perception of brightness of the grey field depends on the environment - in bright surroundings, an identical grey appears darker than in dark surroundings.

Vision: We See Brightness
Lighting Effects: Shadows and Gradient

The continuous luminance gradient across the surface of the wall is interpreted as a property of the lighting. The wall reflectance factor is assumed to be constant. The grey of the sharply framed picture is interpreted as a material property, although the luminance is identical to the luminance in the corner of the room.

Changing luminance levels may arise from the spatial form of the illuminated object; examples of this are the formation of typical shadows on objects such as cubes, cylinders or spheres.
Fixed objects produce retinal images of varying shapes, sizes and brightness. Due to changes in lighting, distance or perspective, this indicates that mechanisms must exist to identify these objects and their properties and to perceive them as being constant.
Psychological Impressions Of Color

Warm colors tend to advance
Cool colors tend to recede
Psychological Impressions Of Color

Using warm and cool sources for Key and Fill light not only increases sense of shape and depth of an object, but assist with defining direction of light

Cool Light And Warm Shade:

Color also can provide information about an object's dimensions and depth.

Our visual system assumes the light comes from above, we rely on our visual experience with nature to explain direction of light.

“visual experience tells us warm light comes from the interior illumination, a cooler light source comes from nature – daylight at day, moonlight at night”